Interesting physics paper

Quantum superpositions of the speed of light by Sabine Hossenfelder

While it has often been proposed that, fundamentally, Lorentz-invariance is not respected in a quantum theory of gravity, it has been difficult to reconcile deviations from Lorentz-invariance with quantum field theory. The most commonly used mechanisms either break Lorentz-invariance explicitly or deform it at high energies. However, the former option is very tightly constrained by experiment already, the latter generically leads to problems with locality. We show here that there exists a third way to integrate deviations from Lorentz-invariance into quantum field theory that circumvents the problems of the other approaches. The way this is achieved is an extension of the standard model in which photons can have different speeds without singling out a preferred restframe, but only as long as they are in a quantum superposition. Once a measurement has been made, observables are subject to the laws of special relativity, and the process of measurement introduces a preferred frame. The speed of light can take on different values, both superluminal and subluminal (with respect to the usual value of the speed of light), without the need for Lorentz-invariance violating operators and without tachyons. We briefly discuss the relation to deformations of special relativity and phenomenological consequences.

Advertisements

Published by

Sankalp Ghatpande

Student of MS Information and Computer Science. Interested in Research @ Information Security | Cryptology | Quantum information science.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s